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In this paper, the problem of heat and mass transfer due to the steady motion of a Rivlin-
Ericksen fluid in tubes of varying cross-section is considered. Suction at tube walls is taken into
account. Under the assumption that the deformations of the boundaries are small, the equations
of motion have been solved by using a perturbation technique. The temperature and concentration
distributions are obtained. The effects of various physical parameters are discussed. The Nusselt
and Sherwood numbers are obtained. A set of figures for a quantitative illustration is presented.
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1. Introduction

The study of the influence of mass and heat trans-
fer on Newtonian and non-Newtonian fluids has be-
come important in the last few years. This impor-
tance is due to a number of industrial processes. Ex-
amples are food processing, biochemical operations
and transport in polymers. Flowing over deformable
boundaries has also gained importance because of its
immediate practical application in lubrication tech-
nology, biophysical flows and many other transporta-
tion types. Besides, the characteristics of the flow of
blood through arteries and veins are of considerable
medical interest.

In the past, there has been a number of studies
of non-Newtonian heat and mass transfer in tubes.
Mathur and Bhatnagar [1] have studied the steady ax-
ial flow of a Rivlin-Ericksen fluid in a wavy annulus
with heat transfer. They found that the non-Newto-
nian parameters affect the velocity field, the stresses
and the temperature field. They also found that the
streamlines near the boundaries run parallel to them
and there is no change in their deformity as a re-
sult of the no slip conditions. O’Neill [2] studied the
effects produced by small-scale plane or axisymmet-
rical boundary irregularities on steady parallel flows
of incompressible viscous fluids. He considered the
flow between two parallel planes as well as that in a
cylindrical pipe of circular cross-section. Under the
restriction that the Reynolds number of the perturbed
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flow is small enough, he obtained the solution of the
stream function. Srivastava [3] has studied the same
problem for a special class of Rivlin-Ericksen “sec-
ond order” fluids. He obtained the velocity compo-
nents and the pressure in powers of the oscillation
amplitude of the plate. He considered the flow of an
incompressible second-order fluid due to torsional os-
cillations of an infinite plate when the fluid is infinite
in extent as well as the case when it is bounded by
another stationary parallel plate.

Kawase and Ulbrecht [4] investigated the heat and
mass transfer in a non-Newtonian fluid flow with dif-
ferent velocity profiles. They considered a laminar as
well as a turbulent non-Newtonian fluid. They found
reasonable agreement between their results and the
available experimental data. Dalal and Mazumder [5]
revealed that for a viscoelastic fluid, the dispersion co-
efficient changes cyclically with a double frequency
period and reaches asymptotically a stationary state
after a certain time as in the case of a Newtonian
fluid and its increase with the viscoelastic parameter.
Pereira et al. [6] found the temperature distribution
of non-Newtonian fluids in a laminar flow heated in
a double tube heat exchanger, and compared the pre-
dictions by analytical and numerical methods. Hung
and Perng [7] discussed the flow of a non-Newto-
nian fluid in the entrance region of a tube with porous
walls. They solved the modified Navier-stockes equa-
tions numerically. Their analysis resulted in velocity
distributions, pressure drops, and skin-friction coef-
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ficients in the cases of blowing and suction. Away
from the entrance, their results agree well with pre-
vious works. Parikh and Mahalingam [8] obtained
analytical solutions for the wall temperature profile
of a power law fluid in laminar flow in a circular tube.
Their computed results are compared with measured
values obtained from a horizontal recirculating flow
experimental unit. Chandra and Prasad [9] studied the
steady flow of an incompressible fluid in a rigid tube
of slowly varying cross-section with absorbing walls.
They found the effect of fluid absorption through a
permeable wall by prescribing the flux as an arbi-
trary function of the axial distance. They obtained
the low Reynolds number flow and the expressions
for various flow characteristics by using perturbation
analysis. Ahmed and Attia [10] discussed the laminar
flow with heat transfer of an incompressible, electri-
cally conducting non-Newtonian fluid in an eccentric
annulus in the presence of an external uniform mag-
netic field. They found a numerical solution of the
governing differential equations. Also, they obtained
the influence of the magnetic field on both the velocity
and temperature distributions. Kurdyumov and Linan
[11] studied the steady, two dimensional, free convec-
tion around line sources of heat and heated cylinders
in unbounded saturated porous media. Their study is
based on the Boussinesq equations, with the velocities
calculated using Darcy’s law.

Prasad and Chandra [12] have considered the prob-
lem of a visco-elastic fluid in tubes of varying cross-
section with suction or injection. Their analysis ig-
nored the presence of mass and heat transfer. Because
of the wide range of practical importance of the mass
and heat transfer, the present paper considered the
mass and heat transfer of a steady slow motion of a
Rivlin-Ericksen fluid in tubes of varying cross-section
with suction. Analytical solutions for the temperature
and the concentration distributions are obtained. The
analysis is based on a perturbation technique. The rate
of the mass and heat transfer is also obtained. The
main idea of the present work was to mathematically
model these phenomena, and the other purpose was to
find the relation between the different parameters and
the external forces. Also, our aim was to show how
the temperature and concentration may be controlled
by changing the various relevant physical parameters.

2. Formulation of the Problem

Consider the steady incompressible flow of a
Rivlin-Ericksen fluid in a tube of slowly varying cir-

cular cross-section and having a permeable wall. We
choose cylindrical polar coordinates (X) !)R). The
radius R = a(X) of the tube is an arbitrary function
of X . Considering a swirl free flow with the velocity
vector V = (U) V) 0) in an (X)R) !) coordinate sys-
tem, the equations governing the steady flow of an
incompressible fluid reduce to
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where & (the dissipation function)= %ij∂vi*∂Xj , $ is
the constant fluid density, P the pressure, C the con-
centration, T the temperature, cp the specific heat at
constant pressure, D the coefficient of mass diffusiv-
ity, Tm the mean fluid temperature, kT the thermal
diffusion ratio and k the thermal conductivity. The
stress components %RR) %RX ) %XX and %"" are given
by the constitutive equations

%ij = #1dij + #2Eij + #3d
!
i d!j ) (6)

dij = vi$j + vj$i) (7)

Eij = ai$j + aj$i + 2vm$i vm$j ) (8)

ai(acceleration vector) =
∂vi
∂t

+ vmvi#m)

where %ij are the stress components, vi and ai be-
ing the velocity and acceleration components, and
“,” stands for covariant differentiation. #1) #2 and #3

are the viscosity, elastico-viscosity and cross-visco-
sity coefficients of the fluid, respectively.
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The tube radius varies slowly, such that

a(X) = a0S
''X
a0

(
) ' =

a0

L
# 1; S(0) = 1) (9)

where a0 is the initial tube radius cross-section, '
the wall variation parameter and L the characteristic
length of the tube [12].

3. Boundary Conditions

At the wall of the tube, the fluid velocity satisfies
the conditions

V " t̂w = 0

V " n̂w = Vw

.
at R = a(X)) (10)

where t̂w and n̂w are the unit tangent and normal
vectors at the tube wall, respectively, and Vw is the
constant suction velocity at the wall. The axial sym-
metry condition requires
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where C0 is the uniform concentration at the wall and
T1 is a uniform temperature at the wall.

P = Pin atX = 0) P = Pout at X = L( (14)

4. Analysis

We introduce the following dimensionless vari-
ables:
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where U0 is the characteristic velocity.
Equations (1 - 5) and the boundary conditions

(10 - 14) in dimensionless form become

(i) the equations of motion
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(ii) the continuity equation
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(iv) the concentration equation
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5. Method of Solution
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To obtain the mass and heat transfer, we use the per-
turbation scheme (27) in (19) and 20). Together with
the boundary conditions (24) and (25), and collect-
ing the coefficients of like powers of ', we get the
following set up to first order:
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Fig. 1. The temperature distribution is plotted versus x, for
a system having the particulars ! = 0"001, P out = 40, P in
= 66.66, r = 1, S(x) = e!x!2, k2 = 10, vw = 0"5, Re = 1,
Ec = 55"5 and Pr = 30 for various values of k1. The figure
illustrates the relation (50).
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Equations (39), (40) and the velocity component u(0)
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Equation (43) gives the following solution
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Fig. 2. For the same system as considered in Fig. 1, but
when k1 = !0"05, and for various values of k2.

Fig. 3. For the same system as considered in Fig. 2, but
when k2 = 10 and for various values of vw and Re.
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Therefore the dimensionless temperature distribution
become
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Fig. 4. For the same system as considered in Fig. 3, but
when vw = 0"5 and Re = 1 for various values of Ec and Pr.

Fig. 5. The concentration distribution is plotted versus x,
for a system having the particulars ! = 0"001, Pout = 40,
Pin = 66"66, r = 1, S(x) = e!

x

2 , a0 = 0"7, u0 = 2, k2 = 10,
d = 0"9, vw = 0"5, Re = 1, Ec = 55"5, Pr = 30, Sc = 0"15
and Sr = 0"05 for various values of k1. The figure illustrates
the relation (52).
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Fig. 6. For the same system as considered in Fig. 5, but
when k1 = !0"05, and for various values of k2.

Fig. 7. For the same system as considered in Fig. 6, but
when k2 = 10, and for various values of vw and Re.
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Equation (44) gives the solution
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Fig. 8. For the same system as considered in Fig. 7, but
when Re = 1# vw = 0"5, and for various values of Pr and Ec.

Therefore the nondimensional concentration distribu-
tion becomes

& = &(0) + '&(1) = 1 + ScSr
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6. Heat Flux

From the temperature field equation (50) we can
now study the rate of heat transfer (heat flux). This
rate is given by [13]

qw = !k
∂T
∂R

jR=a(X)( (53)

By using (15), the dimensionless heat flux may be
expressed by

Nux =
a0qw
kT1

) (54)

where Nux is the Nusselt number.
From (50) and (54), Nux becomes

Nux = !
∂!
∂r
jr=S(x) (55)

Fig. 9. For the same system as considered in Fig. 8, but when
Pr = 30#Ec = 55"5 and for various values of Sr and Sc.

Fig. 10. The Nusselt number is plotted versusx, for a system
having the particulars ! = 0"001, r = 1, Pout = 40, Pin =
66"66, S(x) = e!

x

2 , vw = 0"5, Re = 1,Ec = 55"5,Pr = 30,
and for various values of k1 and k2. The figure illustrates
the relation (56).
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Fig. 11. For the same system as considered in Fig. 10, but
when k1 = !0"05# k2 = 10, and for various values of vw
and Re.

Fig. 12. For the same system as considered in Fig. 11, but
when vw = 0"5, Re = 1, and for various values of Ec and Pr.

7. Diffusion Rate

From the concentration field equation (52) we can
determine the rate of mass transfer (diffusion rate).
This rate is given by [13]

hm = !D
∂C
∂R

jR=a(X) (57)

Then

Nmx =
hma0

DC0
) (58)

where Nmx is the Sherwood number.
From (52) and (58), one gets

Nmx = !
∂&
∂r

jr=S(x) (59)
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Fig. 13. The Sherwood number is plotted versus x, for a
system having the particulars ! = 0"001, r = 1, Pout = 40,
Pin = 66"66, S(x) = e!x!2, a0 = 0"7, u0 = 2, vw = 0"5,
Re = 1, Ec = 55"5, Pr = 30, d = 0"9, Sc = 0"15, Sr = 0"05,
and for various values of k1 and k2. The figure illustrates
the relation (60).
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8. Results and Discussion

Now, a numerical discussion will be made to show
the effects of the parameters entering the problem on
the temperature !, the concentration&, and the Nusselt
and Sherwood numbers Nux and Nmx, respectively.
Therefore (50), (52), (56) and (60) are evaluated by
setting ' = 0(001, Pout = 40 and Pin = 66(66 for a
convergent tube S(x) = e!x%2.

The results are shown in Figures 1 - 17. The effects
of non-Newtonian parameters, the suction parameter,
Eckert number, Prandtl number and Reynolds num-
ber on the temperature distribution in a convergent
tube are shown in Figs. 1 - 6. The expression (50) is
evaluated by taking r = 1, and the values ! are plotted
versus x.

In Figs. 1 and 2 it is observed that the temperature
distribution increases as k1 and k2 increase. In Fig. 3,
we observe that ! increases as Re increases while it
decreases with the increase of vw .

In Fig. 4 it is found that ! decreases with the in-
crease of Ec and Pr.

Figures 5 - 9 are graphed to illustrate the effects of
different parameters on the concentration distribution
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Fig. 14. For the same system as considered in Fig. 13, but
when k1 = !0"05# k2 = 10, and for various values of vw
and Re.

Fig. 15. For the same system as considered in Fig. 14, but
when vw = 0"5, Re = 1, and for various values of Ec and Pr.

&. Therefore the (& ! x) plans are graphed accord-
ing (52). In Figs. 5, 6 and 7 it is found that& decreases
with increase of k1) k2 and Re, while it increases as
vw increases. In Figs. 8 and 9 it is observed that & in-
creases as Pr, Ec, Sr and Sc increase. From the study
of graphs it is found that the effects of various param-
eters entering into the problem on ! and & similary
for the divergent tube at S(x) = ex%2. ! increases as
the parameters increase while& decreases with the in-
crease of the different parameters. The values of Nux
and Nmx are plotted versus x in Figures 10 - 17.

In Fig. 10 it is observed that Nux decreases with
the increase of non-Newtonian parameters. Nux de-
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